Tidal Disruption Events in the TDAMM era

Lessons learned from ZTF

Robert Stein
Postdoctoral Scholar at Caltech
TDAMM Workshop, Annapolis, US

How can we probe the multimessenger emission of TDEs?

Introducing the Zwicky Transient Facility

ZTF is an optical telescope with a 47 sq. deg. field of view

Surveys the entire northern sky every 2 nights, in g+r, as part of a public survey

The ZTF neutrino follow-up program

Credit: Iair Arcavi

~500k objects per night

Neutrino direction and time

Find counterpart?

Trigger Follow-Up

Credit: Iair Arcavi

~500k objects per night

Neutrino direction and time

Spectroscopically classify few remaining objects

Bartos and Kowalski 2017

What are we looking for?

Some statistics...

Stein et al. 2022

Two TDEs coincident with neutrinos

ARTICLES

https://doi.org/10.1038/s41550-020-01295-8

A tidal disruption event coincident with a high-energy neutrino

Stein et al. 2021

Featured in Physics

Editors' Suggestion

Candidate Tidal Disruption Event AT2019fdr Coincident with a High-Energy Neutrino

Simeon Reusch et al.

Phys. Rev. Lett. 128, 221101 – Published 3 June 2022

Physics See Focus story: Neutrinos from a Black Hole Snack

What did we learn from ZTF?

Neutrino follow-up works as a method -> Using ~dozens of multi-wavelength follow-up campaigns, you can probe a ~10%-level contribution to the astrophysical neutrino flux.

Performing realtime searches enables <u>prompt</u> and <u>flexible</u> multi-wavelength observations to characterise individual sources.

Theoretical models, informed by both population data and this single-object data, are compatible with neutrino emission from TDEs.

What do we need to enable multi-messenger follow-up?

The ZTF neutrino follow-up program

Credit: Iair Arcavi

~500k objects per night

Neutrino direction and time

Spectroscopically classify few remaining objects

Telescope to find candidates

Pipeline to select candidates that are:

- Spatially/temporally coincident
- Likely astrophysical
- Belong to populations which could emit neutrinos

Neutrino direction and time

Spectroscopically classify few remaining objects

Telescope to find

Pipeline to select candidates that are:

Spatially/temporally coincident

1: Prompt and reliable neutrino information is the prerequisite for all downstream multimessenger analysis. Need accurate localisations, and useful information to prioritise "better" (=more astrophysical) neutrino alerts.

Neutrino direction and time

Spectroscopically classify few remaining objects

Telescope to find candidates

Pipeline to select candidates that are:

- Spatially/temporally coincident
- Likely astrophysical
- Belong to populations which could emit neutrinos

2. Once accounting for detector systematics, neutrino "90% contours" will almost always be a few square degrees. Suitably wide-field telescopes are required to tile these regions and identify possible EM counterparts.

Neutrino direction and time

Find counterpart?

Trigger
Follow-Up

Telescope to find candidates

Pipeline to select candidates that are:

- Spatially/temporally coincident
- Likely astrophysical
- Belong to populations which could emit neutrings

3. Pipelines are needed to select candidates. This is primarily done though algorithmic filtering, ML, catalogue matching. Public survey data is invaluable here.

Neutrino direction and time

Trigger Follow-Up

Caltech

Telescope to find candidates

Pipeline to select candidates that are:

- Spatially/temporally coincident
- Likely astrophysical
- Belong to populations which could emit neutrinos

Spectroscopically classify few remaining objects

4. Need dedicated spectroscopic programs to support EM follow-up.

time

Caltech

Any neutrino follow-up program

Telescope to find candidates

Pipeline to select candidates that are:

- Spatially/temporally coincident
- Likely astrophysical
- Belong to populations which could emit neutrinos

5. We require multi-wavelength observations to characterise the sources. These could be from dedicated proposals, but DDTs have also worked well. The community is currently operating a "kitchen sink" model, and that will presumably still be true in another decade.

Neutrino direction and time

Beyond Optical Follow-Up

Towards a pan-chromatic view of TDEs

Not to scale (yet!)

Towards a pan-chromatic view of TDEs

Not to scale (yet!)

Systematic searches are possible. Need wide-field surveys for each wavelength!

WINTER: Wide-field InfraRed Transient Explorer

Credit: Robert Stein

WINTER will do a J-band survey at ~monthly cadence, AND dedicated neutrino follow-up!

Thinking outside the box

The view from 2011

The New Hork Times

OBSERVATORY

In Celestial Twist, Black Hole Swallows a Dying Star

By Sindya N. Bhanoo

June 16, 2011

In what sounds like a one of a kind murder mystery, a dying star has fallen into a black hole and been ripped apart.

The event, which was observed on March 28, was originally thought to be a gamma ray burst from a collapsing star, but researchers suspected something more sinister was at play. Their findings appear in a pair of papers published online by the journal Science.

Credit: NASA

Jetted TDEs are "the dog that didn't bark"

Back to the future: An optically-selected on-axis "jetted TDE"

Andreoni et al. submitted

Summary

Summary

- TDE science has had a great decade, let's hope the next one is just as fruitful!
- Neutrino follow-up can probe the multi-messenger emission of TDEs, but requires an integrated TDA ecosystem.
- We need to better understand the intersecting multiwavelength properties of TDEs. Requires wide-field surveys.
- It was an unexpectedly slow decade for relativistic TDEs. Optically-selected AT2022cmc has provided an exciting leap forward, and suggests we need to pay more attention to "rapid transients".

Credit: IceCube

Backup

Embracing diversity in TDEs

How does ZTF find a TDE?

How does ZTF find a TDE?

ZTF operates a "Rubin-style" selection function to select TDE candidates with relatively high purity, yielding a systematic optical sample

Case Study: X-ray properties of 17 optical TDEs

Van Velzen et al. 2020

More recently: AT2021ehb with dramatic X-ray/HR evolution

Time (MJD)

X-ray-selected TDEs from eROSITA tell a different story

Sazonov et al 2022.

Object	Optical flare peak
(SRGE)	AB mag
J135514.8+311605	g > 21.83
J013204.6 + 122236	g > 21.51
J153503.4 + 455056	21.33 < o < 20.58
J163831.7+534020	g > 21.84, r > 21.86
J163030.2 + 470125	21.47 < g < 20.71
J021939.9 + 361819	g > 21.43
J161001.2+330121	g > 21.68
J171423.6+085236	c > 20.04
J071310.6+725627	g > 21.41
J095928.6 + 643023	22.40 < r < 21.64
J091747.6 + 524821	21.49 < r < 20.74
J133053.3 + 734824	g > 21.73
J144738.4 + 671821	<i>c</i> > 20.41

All eROSITA TDEs are optically faint, with Lopt/Lx < 0.3
Only 4/13 detected

Towards a pan-chromatic view of TDEs

Not to scale (yet!)

Towards a pan-chromatic view of TDEs

Not to scale (yet!)

Systematic searches are possible. Need wide-field surveys for each wavelength!

WINTER: Wide-field InfraRed Transient Explorer

Credit: Robert Stein

WINTER will do a J-band survey at ~monthly cadence, AND dedicated neutrino follow-up!

Bridging theory and observation

We currently lack information to inform theoretical models of TDE neutrino/CR emission.

Off the top of my head, critical open questions for theorists include:

- What is the local rate of (all) TDEs, and of jetted TDEs specifically?
- How do these rates change as a function of redshift?
- What is the distribution of outflows, winds or jets in TDEs? How common are they?
 How do they vary by object?
- Do White-Dwarf/IMBH TDEs exist? How common are they? These in particular are studied for potential UHECR emission, but there is a substantial gap in our experimental knowledge. (We've found ~0 thus far.)
- How well can we distinguish a TDE in an AGN from an extreme AGN flare? What are the differences (if any) between TDE accretion and AGN accretion?

Median latency of 12 hours from neutrino detection to ZTF observation

What did we find?

Only a small fraction of 172 candidates are ultimately transients

We classify ~100% of bright sources and ~70% of fainter ones

Two TDEs coincident with neutrinos

ARTICLES

https://doi.org/10.1038/s41550-020-01295-8

A tidal disruption event coincident with a high-energy neutrino

Stein et al. 2021

Featured in Physics

Editors' Suggestion

Candidate Tidal Disruption Event AT2019fdr Coincident with a High-Energy Neutrino

Simeon Reusch et al.

Phys. Rev. Lett. 128, 221101 – Published 3 June 2022

Physics See Focus story: Neutrinos from a Black Hole Snack

From 24 neutrino follow-up campaigns -> Now two neutrino-TDEs

ZTF program uncovered 2 likely neutrino-TDEs out of 24 follow-up campaigns, both particularly bright

Probability of finding two bright TDE by chance with ZTF program: (0.034%=3.4σ)

See Cecilia's talk from this morning for more info on this

What did we not find?

How likely are you to actually find a counterpart?

Estimate what fraction of sources would be detectable with ZTF for a given source source luminosity

Limits on non-TDE neutrino source populations

From 24 campaigns -> first constraints on the optical luminosity function of neutrino sources

How can we do better in future?

Stein et al. 2022

More campaigns

Stein et al. 2022

Deeper campaigns

Credit: Bruno C. Quint

Stein et al. 2022

Better completeness

New Wavelengths!

Credit: Robert Stein

New Wavelengths!

Credit: Robert Stein

Introducing WINTER

J-band survey with ~monthly cadence

ToO program -> First dedicated IR neutrino follow-up program

Introducing WINTER

J-band survey with ~monthly cadence

ToO program -> First dedicated IR neutrino follow-up program

NIR is also great for kilonova searches -> https://arxiv.org/abs/2110.01622

OPEN ACCESS

An Infrared Search for Kilonovae with the WINTER Telescope. I. Binary Neutron Star Mergers

```
Danielle Frostig<sup>1</sup> D, Sylvia Biscoveanu<sup>1,2</sup> D, Geoffrey Mo<sup>1,2</sup> D, Viraj Karambelkar<sup>3</sup> D, Tito Dal Canton<sup>4</sup> D, Hsin-Yu Chen<sup>1,2</sup> D, Mansi Kasliwal<sup>3</sup> D, Erik Katsavounidis<sup>1,2</sup>, Nathan P. Lourie<sup>1</sup>, Robert A. Simcoe<sup>1</sup> D + Show full author list
```

Published 2022 February 21 • © 2022. The Author(s). Published by the American Astronomical Society.

The Astrophysical Journal, Volume 926, Number 2

Citation Danielle Frostig et al 2022 ApJ 926 152

What are TDEs?

Identifying AGN flares

